Ex vivo prostate study of an enhanced 12-core biopsy with electrical impedance

Ethan K. Murphy¹, Xiaotian Wu¹, Alicia C. Everitt¹, Jason Pettus^{2,3}, and Lawrence M. Dagrosa^{2,3}, and Ryan J. Halter^{1,2}, <u>ethan.k.murphy@dartmouth.edu</u>

¹*Thayer School of Engineering, Dartmouth College,* ²*Geisel School of Medicine, Dartmouth College, Hanover, NH,* ³*Dartmouth-Hitchcock Medical Center (DHMC), Lebanon, NH*

Introduction and overall goal. The goal of this study was to evaluate an enhanced 12-core biopsy technique on 22 recently excised prostates using Electrical Impedance (EI) (data and imaging) to assess its potential to improve detection and grading of prostate cancer.

Specific aims. To statistically asses EI's ability to discriminate tumor cores (defined by a distance from the needle to tumor) from benign cores, and correlate EI with Gleason Grade Group.

Rationale and background. Prostate cancer represents the 2nd leading cause of cancer-related death in men and has a significant societal impact with 1 in 9 men being diagnosed with the disease. The standard approach for diagnosing prostate cancer is through a 12-core transrectal ultrasound (TRUS)-guided biopsy procedure, during which small tissue cores are systematically extracted across the whole prostate, which can miss 10-30% of all cancers (probing < 1% of prostate volume). Additionally, while multi-parametric magnetic resonance (mpMRI) approaches are exhibiting success and becoming more common, they still struggle to accurately discriminate between aggressive and indolent disease. Numerous studies have found significant (p<0.001) electrical property contrast between benign and malignant prostate tissues ([2], [3]) and more importantly significant electrical property differences between high-and low-grade cancer ([4]). By collecting EI data using electrodes near the tip of a standard biopsy needle we may be able to leverage prior results and eventually improve clinical care and detection for patients.

Methods and materials. A 12-core biopsy of the ex vivo prostate was performed wherein EI, electromagnetically (EM)-tracking data, and biopsy cores were collected. A total of 22 ex vivo prostates were removed during RALP by a single surgeon (Dr. Dagrosa) at DHMC under an IRB approved protocol from consenting individuals. Following the experiment EM-registration data and an MR were collected and the prostate was sent for histological assessment, wherein tumor boundaries were recorded on MR images. Data was fused together resulting in ~200 cores from the 22 prostates with usable data, i.e. tissue properly collected and all labeling and registration data is consistent. Data was analyzed in terms of tumor-cores (defined by a distance from the needle (Tc)) and benign cores (> 10 mm from needle) and a 2-metric (EI and image-based metrics) in terms of accuracy, sensitivity, and specificity versus tumor distance.

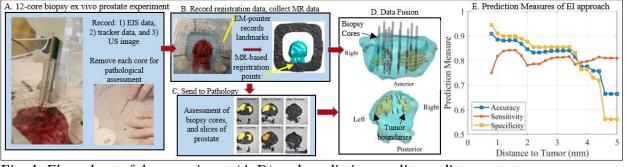


Fig. 1. Flow chart of the experiment (A-D) and prediction quality vs distance to tumor.

Results. The 2-metric approach achieved sensitivity, specificity and accuracy of 0.85, 0.93, and 0.92 for Tc = 0.8, and the accuracy stays high (0.88) until Tc = 1.6 (Fig. 1E), which equates to ~9.6% sensed volume (10x more than a standard biopsy). Gleason grade was significantly correlated to conductivity (an imaging metric) if normalized by size and distance (p=0.012).

Discussion and conclusion. These promising results strongly support the role EI might have in improving detection, diagnosis and care for prostate cancer patients. Such results warrant further study in an in vivo setting. **References.**

1. R. J. Halter, et al., "Electrical Properties of Prostatic Tissues: I. Single Frequency Admittivity Properties," J. Urol., vol. 182, no. 4 SUPPL., pp. 1600–1607, 2009.

2. G. Salomon et al., "The Feasibility of Prostate Cancer Detection by Triple Spectroscopy," Eur. Urol., vol. 55, no. 2, pp. 376–384, 2009, doi: 10.1016/j.eururo.2008.02.022.

3. R. J. Halter, A. R. Schned, J. A. Heaney, and A. Hartov, "Passive bioelectrical properties for assessing highand low-grade prostate adenocarcinoma," Prostate, vol. 71, no. 16, pp. 1759–1767, 2011.